Regional electricity market price forecasting based on an adaptive spatial–temporal convolutional network
نویسندگان
چکیده
The accurate prediction of electricity prices has great significance for the power system and market, regional are difficult to predict due congestion issues in transmission lines. A price framework is proposed based on an adaptive spatial–temporal convolutional network. expected better explore prices’ dynamic characteristics spot market improve predictive accuracy prices. First, different areas regarded as nodes. Then, each area’s historical data used corresponding node’s characteristic information constructed into a graph. Finally, graph containing input price. Operational from Australian adopted, results compared with those existing methods. numerical example show that than baseline similar In twelve-step forecast this paper, considering spatial dependence can by at least 10.3% up 19.8%.
منابع مشابه
Electricity Price Forecasting in Ontario Electricity Market Using Wavelet Transform in Artificial Neural Network Based Model
Electricity price forecasting has become an integral part of power system operation and control. In this paper, a wavelet transform (WT) based neural network (NN) model to forecast price profile in a deregulated electricity market has been presented. The historical price data has been decomposed into wavelet domain constitutive sub series using WT and then combined with the other time domain va...
متن کاملExperimental study on electricity price forecasting using neural network
It is very important to forecast electricity price in a deregulated electricity market for choosing the bidding strategy, and it is the most important signal for other players. It engulfs information for both customers and producers in order to maximize their profit. Thus, choosing the best method of price forecasting is a crucial task to have the most accurate forecast. In this paper the price...
متن کاملForecasting the Price of Energy in Spain’s Electricity Production Market
In this job, short-term forecasts are calculated for the Energy Price in the Electricity Production Market of Spain. The methodology used to achieve these forecasts is based on Artificial Neural Networks, which have been used succesfully in recent years in many forecasting applications. To gauge the quality of forecasts, they have been compared with those obtained with the Box-Jenkins ARIMA mod...
متن کاملComparative Analysis of Short-Term Price Forecasting Models: Iran Electricity Market
As the electricity industry has changed and became more competitive, the electricity price forecasting has become more important. Investors need to estimate future prices in order to take proper strategy to maintain their market share and to maximize their profits. In the economic paradigm, this goal is pursued using econometric models. The validity of these models is judged by their forecastin...
متن کاملNeural network and Fuzzy Regression Model for Forecasting Short Term Price in Ontario Electricity Market
It is very important to forecast electricity price in a deregulated electricity market for choosing the bidding strategy, and it is the most important signal for other players. It engulfs information for both customers and producers in order to maximize their profit. Thus, choosing the best method of price forecasting is a crucial task to have the most accurate forecast. In this paper the price...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Frontiers in Energy Research
سال: 2023
ISSN: ['2296-598X']
DOI: https://doi.org/10.3389/fenrg.2023.1168944